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§91) 2) Note that 22 +1 = 0 if and only if z = 4-i. By Cauchy’s Residue Theorem, for R large enough and
p small enough we have
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Furthermore, we have
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As a result, by taking R — oo and p — 0, we get
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Remark: To find the upper bound for the function, usually we need to use the triangle inequality.

For example, if f(z) = ﬁ, then for R large enough and p small enough we have
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You should be reminded that the upper bound should be non-negative. That leads to the different

between these two inequalities.



§91) 4) Note that (z + a)(z +b) = 0 if and only if 2 = —a or —b. By Cauchy’s Residue Theorem
p < b < a< R we have
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As a result, by taking R — oo and p — 0, we get
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Moreover, 222 + 5iz — 2 = 0 if and only if 2 = —2i or z = —%.
Therefore, by Cauchy’s Residue Theorem, we have
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Since f(z) = 22 has 2 zeros and 0 poles (counted with multiplicities) inside the contour |z| = 1,
we have

Acarg f(z) =2m(2—-0) =4nx
Since f(z) = 1/2% has 0 zeros and 2 poles (counted with multiplicities) inside the contour

|z| = 1, we have
Acgarg f(z) =27(0 — 2) = —4n

Since f(z) = (22 — 1)7/2> has 7 zeros and 3 poles (counted with multiplicities) inside the
contour |z| = 1, we have
Acarg f(z) =2m(7—3) =8

Let f(z) = —52* and g(z) = 2% + 2% — 22. Note that on |z| = 1, we have
l9(2)] < 121° + 12 + 202 =4 <5 = | f(2)]

As a result, by Rouche’s Theorem, the number of zeros of f(z)+ ¢g(z) and f(z) are the same.
Since f(z) = —52* has 4 zeros inside the contour |z| = 1, the number of zeros of f(2)+g(z) =

2% — 524 + 23 — 22 inside the contour |z| =1 is 4.

Let f(z) =9 and g(2) = 22* — 223 + 222 — 22. Note that on |z| = 1, we have
|9(2)| < 202" +2|21® + 2]2* + 2|2 = 8 < 9 = | f(2)]

As a result, by Rouche’s Theorem, the number of zeros of f(z)+ g(z) and f(z) are the same.
Since f(z) = 9 has 0 zeros inside the contour |z| = 1, the number of zeros of f(z) + g(z) =

2% — 524 + 23 — 22 inside the contour |z| = 1 is 0.

Let f(2) = —42% and g(2) = 27 + z — 1. Note that on |z| = 1, we have
9(2)] < |2+ |2| +1=3 <4 =|f(2)]

As a result, by Rouche’s Theorem, the number of zeros of f(z)+ ¢g(z) and f(z) are the same.

Since f(z) = —42® has 3 zeros inside the contour |z| = 1, the number of zeros of f(2)+g(z) =

27 — 423 4+ z — 1 inside the contour |z| =1 is 3.



